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In this work we present the first systematic framework to sculpt active nematic systems, using optimal
control theory and a hydrodynamic model of active nematics. We demonstrate the use of two different
control fields, (i) applied vorticity and (ii) activity strength, to shape the dynamics of an extensile active
nematic that is confined to a disk. In the absence of control inputs, the system exhibits two attractors,
clockwise and counterclockwise circulating states characterized by two co-rotating topologicalþ 1

2
defects.

We specifically seek spatiotemporal inputs that switch the system from one attractor to the other; we also
examine phase-shifting perturbations. We identify control inputs by optimizing a penalty functional with
three contributions: total control effort, spatial gradients in the control, and deviations from the desired
trajectory. This work demonstrates that optimal control theory can be used to calculate nontrivial inputs
capable of restructuring active nematics in a manner that is economical, smooth, and rapid, and therefore
will serve as a guide to experimental efforts to control active matter.
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Active matter represents a broad class of materials and
systems comprising interacting and energy-consuming
constituents. Systems ranging from cytoskeletal proteins
to bird flocks are unified by their common ability to
spontaneously manifest collective behaviors on a scale
larger than the individual agents. One of the promises of
active matter research is that it will enable the design of new
self-organizing materials that possess the lifelike property
of switching between distinct, robust, nontrivial dynamical
states or configurations in response to external stimuli [1].
Towards rationally designing active materials with func-
tional properties, we apply optimal control theory to an
active nematic material, an important subclass of active
matter that includes bacterial films and cell colonies [2], to
switch the system between dynamical attractors in an
optimally smooth, rapid, and efficient manner.
Here we present a concrete paradigm for applying

optimal control to active matter. This theoretical work is
motivated by a model experimental active matter system
comprising microtubules and motor proteins that utilizes
ATP fuel to slide microtubules and thereby generate
extensile stress [3–5]. When compacted into a dense
quasi-2D layer, these microtubules organize into a nematic

with strong, local orientational order. Extensile stresses in
active nematics drive instabilities that create motile topo-
logical defects and chaotic hydrodynamics [6–11]. In order
to harness the chemomechanical abilities of these materials
to do useful work, these dynamics need to be controlled
[12]. Experimentally, this has been accomplished through
physical means by introducing anisotropic friction to the
underlying surface using liquid crystals [13,14], and
through confinement within hardwall boundaries [15,16].
While these approaches can radically alter the dynamics, by
corralling defects into lanes or regular trajectories, the
potential for spatiotemporal actuation with these methods is
limited. Recently, light-activated motor complexes have
been created, allowing active stress to be spatiotemporally
modulated by an external light source in microtubule gels
[17] and nematics [18]. In these promising demonstrations,
the control targets are relatively simple. This allows
intuition, and trial and error, to inform suitable ad hoc
control inputs. However, to systematically achieve more
elaborate configuration goals, a framework is needed that
includes a dynamical model of the system.
To that end, we consider the problem of driving an active

nematic between two attractors, by formally applying
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optimal control theory to a nematohydrodynamic model
and solving for the necessary control inputs. Our control
goal is therefore not to regulate or stabilize the system, but
instead to steer the system between two distinct configu-
rations in a manner that is optimally smooth, efficient, and
rapid. We consider separately two spatiotemporal control
fields: (i) an applied rotation rate gðx; tÞ that rotates the
nematic director Q directly, and (ii) the active stress
strength αðx; tÞ which acts through the momentum equa-
tion and experimentally can be controlled through light
input [17,18]. The former does not currently have an
experimental analog but nothing in principle prevents
engineering such a control field.
We consider an active nematic already corralled by

confinement in a disk with strong parallel anchoring and
no-slip boundary conditions, such that it does not exhibit
chaotic dynamics [19]. Instead, the system produces two
stable limit cycle attractors characterized by two, motileþ 1

2

disclinations that perpetually orbit the domain at fixed
radius in either the clockwise or counterclockwise direc-
tion; note the handedness of the defect configurations in
Fig. 1(a) and 1(c). That is, these attractors are mirror images
of each other, a consequence of the system dynamics’
equivariance under reflection. While these are steady states
of the system, they are maintained by a constant flux of
energy through the extensile active stress and are therefore
minimal, self-organized attractors of the material. In the
absence of activity, the director field would relax to a
motionless equilibrium configuration. As an exemplar
application of optimal control theory, we have identified
the spatiotemporal actuation of either applied vorticity or
active stress that rearranges the nematic director field and
moves the system from one attractor to the other, while
optimally balancing the amount of control input against the
penalty for deviations from the target configuration (Figs. 2
and 4, and movies S1 and S2 in the Supplemental Material
[20]). This is akin to the process of gait switching in
neuroscience. It has been shown that even small networks
of oscillators are capable of multiple rhythms that are
accessible through external inputs [21,22]. We also con-
sider phase-shifting perturbations within one attractor using
both control fields; movies S3 and S4 in the Supplemental
Material [20].
Nematohydrodynamic model.—We utilize a previously

explored continuum nematohydrodynamic model [19,23],
which we restate here in dimensionless form. We choose
this model for simplicity but note that other models can be
put into the same control framework [8,24]. As a minimal
representation of our system, we use an incompressible,
single-fluid model whose state is described by the dimen-
sionless nematic order tensorQ ¼ sρ½n ⊗ n − ð1=2ÞI� and
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FIG. 1. (a) Director n with degree of order s and defects in
magenta (top) and flow field u with vorticity ω (bottom), for
initial condition in the counterclockwise circulating attractor.
(b) Schematic showing two modes of control input. (c) Director
and flow field of the clockwise target configuration.
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FIG. 2. Transformation from counterclockwise to clockwise rotation using applied vorticity actuation. (a) Director field and degree of
order, (b) applied vorticity gðx; tÞ and (c) velocity field and vorticity, with W ¼ 600, tf ¼ 2. See movie S1 in the Supplemental
Material [20].
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fluid flow field u. Q describes both the local orientation n
and degree of order s of the nematic, and is scaled by the

nematic density ρ such that (ρs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2TrQ2
p

). The coupled
dynamics are given by

∂tQþ∇ · ðuQÞ − ½ðΩþGÞQ −QðΩþGÞ� − λE −H

¼ fQðQ;u; gÞ ¼ 0 ð1Þ

Along the boundary Qj∂Ω ¼ s�ρ½t ⊗ t − ð1=2ÞI�, with
boundary tangent t and degree of order s� ¼ ffiffiffi

2
p

associated
with a fully ordered nematic in the limit ρ → ∞ [25].
Kinematic terms and free-energy relaxation both contribute
to the dynamics of Q. The kinematic terms depend on
the local fluid flow velocity and gradients, with Ωij ¼
1
2
ð∂jui − ∂iujÞ as the antisymmetric vorticity tensor and

Eij ¼ 1
2
ð∂jui þ ∂iujÞ as the symmetric strain rate tensor.

The vorticity tensor is augmented by an applied field
G ¼ 1

2
ð0g −g0 Þ, where g is one of the control inputs we

consider, applied vorticity. The relaxational terms H are
proportional to variations of the system free energy,
H ¼ ðβ1 − β2Q∶QÞQþ 2∇2Q. Momentum conservation
in the Stokes limit, incompressibility constraint ∇ · u ¼ 0,
and boundary conditions uj∂Ω ¼ 0 govern the fluid flow

η∇2u −∇P −∇ · ðαQÞ ¼ fuðQ;u; αÞ ¼ 0; ð2Þ

with pressure P and strength of activity α. The active stress,
−αQ corresponds to an extensile dipole force density
[2,26,27]. The scaling factor α serves as the second form
of spatiotemporal control input that we consider. Since
Q ∝ ρ, relaxing the uniform density assumption would add
nuance to the dynamics and control by allowing∇ρ to drive
flow [25,28,29]. Systems with an isotropic active stress
component, such as growing bacterial colonies, contain
additional terms [30]. In some applications, control of
ρðx; tÞ itself may be of interest.
Optimal control.—We seek a spatiotemporal input field,

either gðx; tÞ or αðx; tÞ, that drives the system towards a
desired director field configuration Q� by minimizing the
following scalar cost functional J

J ¼ 1

2

Z

tf

0

dt
Z

Ω
d2x

h

g2 þ Γg∇g · ∇g

þ ðα − α0Þ2 þ Γα∇α · ∇αþW
1

2
ΔQ∶ΔQ

i

; ð3Þ

subject to Eq. (1) and Eq. (2). We pose the control problem
as a tracking problem by quadratically penalizing devia-
tions ΔQ ¼ Qðx; tÞ −Q�ðx; θ þ t − tfÞ from the desired
state throughout the control window t ∈ ½0; tf�. Q� is
selected from a precalculated time-periodic solution,
Fig. 1. We shift the lookup of Q� continuously in time
such that at the end of the control window, the time of the

reference solution is θ. Control actuation is also penalized
quadratically with either ðα − α0Þ2 or g2. We penalize
deviations from α0 rather than α itself to maintain the
intrinsic dynamics of the material as much as possible.
Finally, we promote smoothness on α and g by additionally
penalizing ∇α · ∇α and ∇g · ∇g, with weights Γα and Γg.
This is more crucial when α is the control input, since
gradients in α can be exploited to achieve arbitrarily large
forces, which we want to discourage. Including these three
penalties creates a control problem with opposing forces;
the solutions we identify optimally balance matching the
desired trajectory quickly against applying inputs to the
system. We can sacrifice accuracy but use less control by
decreasing the weight W on the state penalty, or alter-
natively arrive more rapidly at the target configuration by
increasing W.
Following Pontryagin’s theorem [31,32], we constrain our

search of optimal state trajectories to those that obey the
system dynamics by introducing Lagrange multipliers
ψðx; tÞ ∈ R2×2, νðx; tÞ ∈ R2, and ϕðx; tÞ ∈ R1, which are
the adjoint or costate variables forQ, u, and P, respectively,
and augmenting the original cost function Eq. (3)
to give L ¼ J þ R tf

0 dt
R

Ω d2x½ν · fu þ ψ∶fQ þ ϕð∇ · uÞ�.
The conditions for optimality are ðδL=δψÞ, ðδL=δνÞ,
ðδL=δϕÞ, ðδL=δQÞ, ðδL=δuÞ, ðδL=δPÞ, ðδL=δαÞ,
ðδL=δgÞ ¼ 0. The first three conditions simply return the
original nematohydrodynamic equations governing
fQ;u; Pg, Eq. (1) and Eq. (2). The following three con-
ditions yield the dynamical equations for the adjoint varia-
bles fψ; ν;ϕg:

−∇2ν −∇ϕþ h1 ¼ 0;∇ · ν ¼ 0 ð4Þ

WðQ −Q�Þ − ∂tψ − u ·∇ψ − 2∇2ψ þ αh2 þ gh3

þ h4 þ 2Qβ2ðQ∶ψÞ − ψðβ1 − β2Q∶QÞ ¼ 0; ð5Þ

with final conditions fν;ψgðx; tfÞ ¼ 0 and boundary con-
ditions fν;ψgj∂Ω ¼ 0. Full expressions for the terms h1−4
are stated in Ref. [33], where we have usedQxy, ψxy ¼ Qyx,
ψyx and Qxx, ψxx ¼ −Qyy, ψyy. The final two optimality
conditions ðδL=δαÞ; ðδL=δgÞ ¼ 0 constrain the control
inputs:

ðα − α0Þ − Γα∇2α

− ½Qxxð∂xνx − ∂yνyÞ þQxyð∂yνx þ ∂xνyÞ� ¼ 0 ð6Þ

g − Γg∇2gþ ðQxyψxx −QxxψxyÞ ¼ 0: ð7Þ

Additional degrees of freedom, such as the nematic density ρ
in a compressible system, can readily be included by
introducing concomitant adjoint variables and optimality
conditions.
We solve the coupled PDE system and constraints

using the direct-adjoint-looping method [34]; our code is
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available at Refs. [35,36]. We consecutively solve the
forward dynamics Eq. (1) and Eq. (2), and adjoint dynam-
ics Eq. (5) and Eq. (4). The latter are solved backwards in
time and thus are responsible for propagating the residuals
of the director field ΔQ. After each backward run, the
control fields are updated via gradient descent using the
Eq. (7) for applied vorticity or Eq. (6) for stress. Gradient
descent step sizes are chosen using the Armijo backtracking
method [37]. The process is repeated until the cost function
Eq. (3) converges to a desired tolerance ∼10−4. For all

computations λ ¼ 1 and Γg;α ¼ 0.1. We restrict ourselves to
a domain size of radius R ¼ 6.5 and baseline active stress
α0 ¼ 5 that produces a stable periodic solution consisting
of a single fluid vortex driven by two þ 1

2
defects (Fig. 1)

[19]. Both clockwise and counterclockwise circulating
states are precalculated and used as Q� and initial con-
ditions. The state and adjoint fields are integrated using the
finite element analysis software COMSOL [35,36].
Results.—We first consider chirality switching using

applied vorticity g, see Fig. 2 and movie S1 in the
Supplemental Material [20]. At t ¼ 0 the applied control
field (second row) is strongest in the center of the disk and
opposes the native vorticity (last row). The amplitude of the
control quickly fades as the director field (first row) tran-
sitions througha symmetric, dipolar configuration (t ¼ 0.16)
to the other attractor. After the defects begin circulating in the
desired clockwise direction, small amounts of control are
applied to adjust the director field so that it matches the target
trajectory (movies S1–S4 [20] all show both the solution Q
and target Q� for reference). We next consider the same
control goal using the activity strength α as the input, Fig. 4.
In this case a combination of strong extensile and weak
contractile stresses are used to again pull the defects towards
the dipolar configuration (t ¼ 0.96) and then nudge them
towards the other attractor. Figure 3 summarizes the dynam-
ics of the system for both vorticity and stress control by
plotting the evolution of three spatially integrated quantities:
(i) circulation, which coarsely describes the proximity of the
system to one of the circulating attractors (note that the zero
crossing coincides with the system’s transition through the
achiral configuration), (ii) control effort, and (iii) residual of
the director thatmeasures the approach of the systemQ to the
target trajectory Q�.
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FIG. 3. Evolution of bulk system properties during counter-
clockwise to clockwise maneuvers using (a) vorticity control
gðx; tÞ, Fig. 2, and (b) active stress strength αðx; tÞ, Fig. 4:
(i) circulation
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FIG. 4. Transformation from counterclockwise to clockwise rotation using active stress actuation, (a) director field and degree of
order, (b) active stress αðx; tÞ − α0, and (c) velocity field and vorticity, W ¼ 900, tf ¼ 2. See movie S2 in the Supplemental
Material [20].
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We next consider phase-shifting maneuvers actuated by
vorticity (movie S3 [20]) and stress (movie S4 [20]). In the
former, additional positive vorticity is applied to the interior
of the disk, between the two þ 1

2
defects, while negative

vorticity is applied in two regions at larger radii. These
regions of opposing applied vorticity act on either side of
the defects like enmeshed gears, to rapidly advance the
position of the defects and thus the phase. This action adds
noticeable twist to the director (t ¼ 0.24) that relaxes once
the control fades. In the latter, additional active stresses are
added at large radii, stopping circulation and temporarily
moving the director to a symmetric, dipolar, configuration
(t ¼ 0.68), similar to the action seen in the attractor-
switching maneuver explored in Fig. 4 and movie S2 in
the Supplemental Material [20]. Active stresses then break
the symmetry to resume circulation at the desired phase.
For both chirality switching and phase shifting, given the

periodic nature of the starting and target configurations, it is
likely that multiple solutions exist. For example, for every
phase-advancing solution, there is likely a phase-delaying
solution that achieves the same goal. This situation
becomes more complex when switching between attractors
and the phases of each attractor come into play. Thus, while
we have used an optimal control framework, we cannot
guarantee that the solutions found are globally optimal
when multiple solutions exist; in this sense the control
framework provides a means to generate a physically
informed and plausible control solution. We speculate that
isochron and isostable reduction of the full order control
problem may yield physical insights and permit exploring
the range of control scenarios more effectively [38–40].
Creating a more parsimonious model would also reduce
computational time, easing experimental implementation.
Conclusion.—A grand challenge in active matter is to

develop systems built from simple building blocks
that manifest pre-programmed spatiotemporal dynamics
[12]. The two circulating states we explore are emergent
dynamical attractors that spontaneously self-assemble
from an active liquid crystal when parameters are
tuned correctly. This work paradigmatically demonstrates
that one attractor can be effectively reassembled into
a new attractor through the proper choice of system
inputs.
While the active nature of the fluid we consider here gives

rise to dynamics fundamentally different than those
of driven, passive fluids, connections can be made
between our work and control of classical turbulence. The
attractors we explore are examples of exact coherent
structures (ECSs), which are typically exact solutions to
the Navier-Stokes equations. The dynamics of a turbulent
flow can be thought of as a meandering path that visits
multiple ECSs through heteroclinic connections [41,42].
While we have applied perturbations to switch basins of two
attractors, one could envision a similar class of control
problems that aim to stabilize certain ECSs or remove

connecting orbits between ECSs to delay transition to the
chaotic or (mesoscale) turbulent regime in active nematic
systems [16,43]. Further, while we explored spatio-
temporally smooth control inputs, changing the norm
on the control penalty can be used to promote sparsity,
resulting in control inputs that are spatially or temporally
localized [44].
In addition to artificial active systems, living systems

also present a potential application of control theory
[32]. For example, stress gradients radically rearrange
cells during embryonic development [45] and wound
healing [46–48]. One can use the inverse problem
framework of optimal control to design the stress fields
necessary to achieve a particular morphological change,
thereby guiding both experimental and medical device
design.
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