
PHYSICAL REVIEW E 97, 012702 (2018)
Editors’ Suggestion

Insensitivity of active nematic liquid crystal dynamics to topological constraints
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Confining a liquid crystal imposes topological constraints on the orientational order, allowing global control
of equilibrium systems by manipulation of anchoring boundary conditions. In this article, we investigate whether
a similar strategy allows control of active liquid crystals. We study a hydrodynamic model of an extensile active
nematic confined in containers, with different anchoring conditions that impose different net topological charges
on the nematic director. We show that the dynamics are controlled by a complex interplay between topological
defects in the director and their induced vortical flows. We find three distinct states by varying confinement and
the strength of the active stress: A topologically minimal state, a circulating defect state, and a turbulent state.
In contrast to equilibrium systems, we find that anchoring conditions are screened by the active flow, preserving
system behavior across different topological constraints. This observation identifies a fundamental difference
between active and equilibrium materials.
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I. INTRODUCTION

Boundary conditions and topological constraints enable
long-ranged control over the structural order of equilibrium
(passive) liquid crystal systems. This understanding has led to
numerous practical applications, most notably liquid crystal
display devices and more recently self-assembly of colloids
[1–4]. A similar potential should exist in active liquid crystal
systems, which are collections of rodlike particles continu-
ously driven away from equilibrium by energy input at the
scale of the particles [5–7]. Indeed, experiments and theory
have shown that introducing boundaries into active systems can
generate system-spanning effects [8–21]. However, in contrast
to equilibrium materials, the constituent units of an active mate-
rial generate hydrodynamic flows that can couple to or compete
with the structural order and topological constraints imposed
by a boundary. It is unclear how the interplay between flow and
boundary-imposed order controls the emergent spatiotemporal
behaviors of active materials. This limitation prevents rational
design of active devices that might be used, for example, to
extract work [22,23] or drive assembly.

In this article we theoretically study the interplay between
the topological and hydrodynamic aspects of confinement on
a class of active materials, extensile active nematics. While
previous numerical studies of confined active nematics have
led to important insights, [12,15,17,18,24–26], the dependence
of their dynamics on container boundary conditions has not yet
been studied. Here, we investigate active nematics under cir-
cular confinement in containers with four different anchoring
conditions, which lead to three different topological constraints
on the enclosed nematic director.

Remarkably, in contrast to the case of passive nematics,
we find that topological constraints weakly impact the struc-
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ture of active flows. In all containers, the interplay between
topological defects, their self-generated flows and boundary
constraints leads to a rich, but similar, set of spatiotemporal
dynamics. As confinement is increased or active stress strength
decreased, the system transitions from a turbulent state to a
static configuration resembling a confined passive nematic. In
between, the system exhibits a unique dynamical steady state
characterized by a pair of corotating + 1

2 defects which undergo
spontaneous and continuous flow, with − 1

2 defects relegated
to the boundary. This insensitivity to topological constraints
distinguishes active from passive liquid crystals.

II. MODEL

Our study is motivated by experiments on a widely studied
model active nematic system comprising microtubule bun-
dles driven by ATP-powered kinesin motor proteins [27–30].
Recently this system has been studied under hydrodynamic
and topological confinement by placing the suspension in
microfabricated SU8 wells that are O(100 μm) in diameter
and enforce parallel anchoring of microtubules. Examples of
configurations observed in these experiments are shown in
Fig. 1 and the corresponding dynamics are shown in movies
S1 and S2 in the Supplemental Material [31]; a future work
will explore the experimental system in more detail.

As a minimal representation of this system, we use a
single-fluid continuum model whose state is described by the
dimensionless nematic order tensor Q = sρ[n ⊗ n − (1/2)I]
and fluid flow field u. Q describes both the local orientation
n and degree of order s of the nematic and is scaled by the
nematic density ρ such that (ρs =

√
2 Tr Q2). The coupled

dynamics are given by

∂tQ + ∇ · (uQ) = (Q� − �Q) + λEτ + γ −1H. (1)

Kinematic terms and free-energy relaxation both contribute
to the dynamics of Q. The kinematic terms depend on the local
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(a) (b)

FIG. 1. (a),(b) Fluorescence microscopy images of the kinesin-
microtubule system described in the text that motivate our theoretical
investigation, with microtubules fluorescently labeled and confined
to SU8 holes with radii of (a) 50μm (see movie S1 [31] in the
Supplemental Material) and (b) 250 μm (movie S2 [31]). Defects
are labeled with magenta arrows (+ 1

2 ) and blue points with three
spokes (− 1

2 ).

fluid flow velocity and gradients, with �ij = 1
2 (∂iuj − ∂jui) as

the antisymmetric vorticity tensor and Eij = 1
2 (∂iuj + ∂jui) as

the symmetric strain rate tensor. The operation Aτ denotes the
traceless version of a second order tensorAτ

ij = Aij − 1
2δijAkk .

The relaxational terms are proportional to variations of the
system free energy, with Hij = −δF/δQij and γ −1 as the
dissipation rate. The total free energy of the system is given by
F = FLDG + FND where the first term,

FLDG =
∫

�

d2r
{
C

(
−β1

2
Tr(Q2) + β2

4
Tr(Q2)2

)

+ 1

2
L1|∇Q|2 + 1

2
L2(∇ · Q) · (∇ · Q)

}
, (2)

is the bulk Landau–de Gennes free energy [32]. The dimension-
less functions β1(ρ) = ρ − 1 and β2(ρ) = (ρ + 1)/ρ2 control
the transition from an isotropic fluid (ρ < 1) to a nematic
phase (ρ > 1); in this work we set ρ = 1.6 to focus on the
nematic phase far away from the phase transition. The second
free energy term,

FND =
∮

∂�

dr
1

2
EA Tr[(Q − W)2], (3)

is the Nobili-Durand boundary anchoring energy [33] with
the director and order along the boundary given by the
tensor W; a similar form of the anchoring energy has been
used previously in the study of active nematic suspensions
[34]. For example, parallel anchoring on a circular boundary
with boundary tangent t(θ ) = {− sin (θ ), cos (θ )} gives W =
s∗ρ[t ⊗ t − (1/2)I] where s∗ = √

2 is the degree of order
associated with a nematic in the limit ρ → ∞ [35]. The
gradient descent dynamics are therefore given by

γ −1Hij = Dr(β1 − β2QklQlk)Qij + 2DE∂k∂kQij

−DA(Qij − Wij )|∂�, (4)

where DE = (L1 + L2)/2γ,DA = EA/γ and Dr = C/γ .
Momentum conservation in the Stokes limit along with

incompressibility constraint ∇ · u = 0 governs the fluid flow

η∇2u − ∇P − α∇ · Q + ∇ · σp = 0 (5)

with pressure P , dynamic viscosity η, strength of activity
α, and passive elastic stress tensor σp = −λsH + QH − HQ.
The active stress, −αQ corresponds to an extensile dipole force
density and is the leading order active term that can arise from a
nematic fluid; gradients in the director and order, ∇ · Q, impart
force into the fluid [5,7,36]. Including an active stress term of
this form is motivated by the observed extensile nature of the
microtubule system, Fig. 1 [27,30].

We nondimensionalize the system using the time scale
T = D−1

r and length scale L = √
DE/Dr (equivalently, L =√

(L1 + L2)/2C) and introducing dimensionless operators
(∂̄t = ∂t/Dr, ∂̄i = ∂i/

√
DE/Dr). This gives the dimensionless

system

∂̄tQ + ∇̄ · (ūQ) = (Q�̄ − �̄Q) + λ̄Ēτ + H̄,

H̄ij = (β1 − β2QklQlk)Qij + 2∂̄k ∂̄kQij

− D̄A(Qij − Wij )|∂�,

∇̄2ū − ∇̄P̄ − ᾱ∇̄ · Q + ∇̄ · σ̄p = 0 (6)

with variables (ū = u
√

DrDE and P̄ = P/Drη and parameters
D̄A = DA/Dr, λ̄ = λ/Dr, ᾱ = α/ηDr, and R̄ = R/

√
DE/Dr.

We solve Eqs. (6) in a circular domain of radius R̄. We
assume no-slip boundary conditions on the fluid flow (ū|∂� =
0) and arbitrarily fix pressure to P̄ = 0 at a point along the
container wall. We initialize the flow field at rest, ū = 0, and
the director is set to a small random perturbation of 5% around
a uniform field. We assume that the active stress and viscous
dissipation dominate the force balance and therefore neglect
passive elastic stresses (by setting σ̄p = 0). As we will show,
defect densities scale as expected from theories which include
these additional forces, and our phase diagram (Fig. 2) is
similar to that from a recent numerical study on confined active
nematics that includes these additional terms [20].

To integrate the equations of motion, we used the finite
element analysis software COMSOL by inputting the equations
directly using the weak form. We removed second order deriva-
tives using integration by parts, creating natural boundary
conditions n · ∇ū|∂� = 0 and n · ∇Q|∂� = 0. The former was
explicitly overwritten with the no-slip condition, while the
boundary energy term ∝ D̄A contributes to the latter. We used
quadratic elements for Q and ū, and linear elements for the
pressure [37]. The element size was �x̄ ∼ 0.1. The largest
system we considered (R̄ = 15) produced a system with ∼105

DOF, which was completed in a few hours on a desktop
computer. We tracked defects in the simulation results using
the same software developed to study experimental systems
in DeCamp et al. [27]. Outside of this section, dimensionless
quantities will appear without overbars.

III. RESULTS AND DISCUSSION

A. Parallel anchoring

Previous works have yet to study the boundary conditions
that most closely represent the experimental system: no-slip
hydrodynamic boundary conditions (u|∂� = 0) and parallel
anchoring of the nematic w = {− sin (θ ), cos (θ )} such that
the net topological charge is +1. Here, we begin by focusing
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FIG. 2. (a) Director and order (top), and vorticity and stream-
lines (bottom), corresponding to the three dynamical steady states
observed in the FEM simulations: (i) dipolar state (DS, movie S3),
(ii) circulating state (CS, movie S4 [31]), and (iii) turbulent state
(TS, movie S5 [31]). Results are shown for parallel anchoring.
(b) Time-averaged, excess defect density ρ∗

� = (N� − 2)/πR2

(where N� is the total number of ± 1
2 defects) as a function of disk

radius R and active length scale α−1/2 [15,25,26]. We subtract 2 to
offset by the number of topologically required + 1

2 defects. The three
cases shown in (a) are indicated with white circles. The inset of (b)
plots the threshold activities for the transitions from DS to CS (α†)
and CS to TS (α∗) as a function of R−2.

on these boundary conditions, which represent a topologically
incommensurate confinement in that a defect-free nematic
cannot be formed. We consider a range of domain sizes
(R = 4.5–15) and active stress strengths (α = 0–12).
Experimentally these parameters are controlled by,
respectively, varying the microfluidic well radius and motor
protein concentration. In principle the nematogen density ρ

can also be varied, but this is harder to control experimentally
and so we leave it fixed at ρ = 1.6. Moreover, for the
model considered here which does not lead to concentration
gradients, increasing density maps to increasing α (to leading
order for ρ > 1). Finally, we fix the boundary relaxation term
to DA = 3 for all simulations and assume our material to be
flow aligning with λ = 1.

We observe three dynamical steady states as confinement
and activity are varied:

(i) At high confinement (small R) and low α, we observe a
stationary state that is topologically identical to the equilibrium
configuration. For parallel anchoring, this consists of two
static + 1

2 defects located at antipodal positions, and directed
radially outward [Fig. 2(a) i]; we refer to this as the dipolar
state (DS). Although the director is static, the active stress
generates a quadrapolar flow with four equally sized vortices.
In this regime, the director relaxation dominates over flow
alignment.

(ii) As the activity level or container size is increased past
threshold values, the system transitions to a state in which the
two + 1

2 defects circulate in closed orbits [Fig. 2(a) ii]; we refer
to this configuration as the circulating state (CS). Importantly,
while the rearrangement of the director configuration and
defect orientations between the DS and CS appears small,
the scale and structure of vorticity has changed dramatically.
The four equally sized vortices of the DS are replaced by
two smaller vortices with the same sense of rotation, and
a single large vortex with opposite sign. Vortex coarsening
and circulation have been observed in systems such as the
microtubule-kinesin system (Fig. 1), swimming organisms
[13,16,38,39], crawling cells [40–42] and previous numerical
studies of confined active nematics with different boundary
conditions [12,17,18]. We show below that this state is highly
robust to boundary conditions. Consistent with earlier findings
using natural boundary conditions on Q [12], the threshold
activity α† for transitioning from stationary to persistent defect
circulation depends on domain size according to α† ∼ R−2

[inset of Fig. 2(b)].
Additionally, we identified striking, symmetry-breaking

dynamics during the development of the CS; Fig. 3(a) and
movie S4 [31]. By starting with initial conditions close to
the DS configuration, we observed how the director and flow
fields evolve during the dynamical transition into the CS.
The resulting trajectories show that the system momentarily
creates a region of disorder in the form of a new ± 1

2 pair.
The − 1

2 defect created during this event rapidly annihilates
with one of the original dipolar + 1

2 defects, creating the
corotating defect configuration. Based on observations of
simulation trajectories, we conjecture that the DS → CS tran-
sition requires creating a region of local disorder, such as
an additional ± 1

2 defect pair. While the simulation trajec-
tories show that there is sufficient active energy to produce
excess defects within the DS, the system no longer produces
excess defects once the transition to the topologically equiv-
alent CS is complete. While the mechanism for stability is
unexplored, this observation suggests that the hydrodynamics
of the CS inhibit the continued formation of defects.

To quantify the differences between the CS and DS, we plot
the free energy FLDG, total system dissipation, and the total
circulation

∮
∂�

u · eθ dx in Fig. 3(b). To compare the CS and DS
states at the same parameter values, we present results from an
additional set of simulations that enforced left-right symmetry
[thus suppressing the CS and retaining the DS, dashed lines in
Fig. 3(b)]. We see that FCS

LDG > FDS
LDG. While the director fields

for the CS and DS are similar, the CS is, in fact, more deformed.
Additionally, during the transition (t = 5–6) the free energy of
the CS exceeds its steady value when the additional pair is
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FIG. 3. (a) Simulation results showing the director and degree of order (top) and flow field and vorticity (bottom) during the transition
from the DS to the CS; α = 5 and R = 6.5, the same as Fig. 2(a) ii (movie S4 [31]). The stills show the process in six steps: (1) The dipole
configuration similar to that shown in Fig. 2(a) i. (2) Two + 1

2 defects with a nascent ± 1
2 pair (purple region of disorder). (3) The ejection

of a + 1
2 defect (circled in red to distinguish it from the other + 1

2 defects). (4),(5) The annihilation of one of the original DS + 1
2 defects.

(6) The beginning of the CS. (b) Total system viscous dissipation (blue), FLDG (magenta), and circulation (black) as a function of time during
the transition from the DS to the CS shown in panel (a) (R = 6.5 and α = 5). The dashed lines show results when we impose left-right symmetry,
suppressing the CS and thus forcing the system to remain in the DS.

created, indicating the presence of an activation barrier for the
process. The dissipation in the CS is also greater than in the
DS. This can be understood by noting that the force imparted
by the nematic into the fluid ∝ ∇ · Q; thus, to leading order
more distortions lead to more energy imparted into the flow,
which subsequently must be dissipated.

(iii) Above a threshold radius or activity, defects proliferate
and the system transitions into a turbulent state (TS) that
qualitatively resembles the behavior of an unconfined active
nematic [25,35,43] [Fig. 2(a) iii]. We define N� as the average
number of both ± 1

2 defects; the excess defect density is then
ρ∗

� = (N� − 2)/πR2. Beyond the transition, ρ∗
� scales lin-

early with the offset activity α − α∗ as it does in the bulk [25].
We therefore define α∗ as the point at which bulk defect density
scale begins; α∗ ∝ R−2 [see inset of Fig. 2(b)]. The phase
diagram presented is consistent with earlier findings [18,20].

B. Other topologies

We now explore the effects of container-imposed topo-
logical constraints on system behaviors by considering an-
choring conditions that favor aster, neutral, or saddle director
configurations at equilibrium. Respectively, these conditions
correspond to net topological charges of −1, 0, and +1, and we
construct them by specifying an anchoring director w along the
boundary given in Cartesian vectors by {cos θ, − sin θ}, {1,0},
and {cos θ, sin θ}. We note that independent control of the
boundary conditions for the flow field and director can only
be achieved with “wet” nematic models such as used here.
Overdamped or “dry” models simplify the governing equations
by assuming u ∝ ∇ · Q [27,35,43–47]; however, this assump-
tion precludes prescribing the no-slip boundary condition for
arbitrary boundary geometry and topology. Previous theoret-
ical works have explored the transition between these limits
in boundaryless systems [15,48]; here, we focus on the wet
limit for simplicity. Because our results with parallel anchoring
show that increasing activity can be mapped to decreasing ra-
dius, we fix the container radius at R = 6.5 and vary activity α.

For all topologies, we observe the same three classes of
steady states described for parallel anchoring (Fig. 4). At
low activity (i.e., high confinement) we observe the topo-
logically minimal state for each container, consistent with
its equilibrium configuration. Above a threshold activity α†,
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FIG. 4. Behaviors in three different container topologies (from
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configuration for α = 0. Bottom: circulating states observed for α =
5. Animations of the circulating states are provided in movies S6–S9
[31]. (b) Excess defect number N∗

� as a function of activity for each
topology with α†,∗ labeled. R = 6.5 for all cases.
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FIG. 5. (a) Spatial distributions of + 1
2 (magenta), − 1

2 (blue),
and all (gray) defects normalized by the total, average defect con-
centration for the same conditions in the TS (α = 12, R = 15).
(b) Spatial distribution of defect nucleation rates (black) and anni-
hilation rates (red) normalized by the system average. To illustrate
the extent to which annihilation rates follow the law of mass action,
the product of the spatial distributions of ± 1

2 defects (scaled by a
factor of 4 to make the trend the same order of magnitude as the
creation and destruction rates) is also plotted (blue). Panels (c) and
(d) plot the normalized orientation distributions for each defect type
at the radial points corresponding to their respective maxima (i) and
(ii).

whose value depends only weakly on topology, the system
transitions to a circulating state with two corotating + 1

2 defects
and sufficient − 1

2 defects to fulfill the topological constraint.
While the − 1

2 defects contribute to the flow, their influence
decays rapidly in space [49] and they tend to reside along
the boundary. The system-sized vortex structure is therefore
preserved across topologies. Above a higher threshold activity
α∗, which also depends only weakly on topology, the system
transitions to the TS, with the defect number proportional to α

as discussed above for parallel anchoring. The most significant
difference between topologies occurs between the onset of
the CS and the transition to the TS. The neutral topology
admits a second subturbulent state with two additional + 1

2
defects with more complex, but still regular, defect trajectories
(movie S8 [31]); the dynamics strongly resemble the “dancing
defect” state observed in topologically neutral channels [17].
This additional state suggests the possibility of finely tuned
nontrivial active states in the range α† < α < α∗ for these and
other topologies not considered here.

Deep in the turbulent regime (α = 12 and R = 15) we
find that defects exhibit nontrivial spatial distributions and
orientations near the boundary. Figure 5(a) shows the time-
averaged spatial distributions of defects for the parallel an-
choring container; both defect types accumulate near the

boundary, but at different radial positions respectively labeled
by i and ii. The − 1

2 defects are located close to the wall;
the radial position of this maxima is anchoring condition
dependent but scales like the active length scale α−1/2. In
contrast, + 1

2 defects are displaced further from the wall,
toward the center. Because of these displaced and nonuniform
distributions, the net topological charge of the container (+1 in
this case) is distributed unevenly throughout the system. There
is an “interior region” where there are equal populations of
± 1

2 ; since it is topologically neutral we consider the interior
region to be bulklike. This is surrounded by a “topological
boundary layer” containing the displaced peaks of ± 1

2 , and a
net topological charge of +1.

In Fig. 5(b) we examine the spatial distribution of annihila-
tion and nucleation and consider whether they are the cause of
the spatially nonuniform defect densitities, Fig. 5(a). We see
that nucleation rates are nearly uniform throughout the domain,
indicating no spatially preferred sites of defect generation.
Annihilation rates are peaked in the boundary layer; however,
Fig. 5(b) shows that the distribution of annihilation rates
is roughly proportional to the product of defect densities,
ρ2

±(r) = ρ+(r)ρ−(r). This suggests that defect annihilation
simply follows the law of mass action for a bimolecular
reaction; thus, the spatial dependence of defect annihilation
rates is a consequence (rather than a cause) of the nonuniform
defect density. Taken together, these trends suggest that the
spatially nonuniform defect distributions arise because the
inner and outer boundary regions act as attractors for + 1

2 and
− 1

2 defects.
Defect dynamics are complex because defects with different

charges have qualitatively different hydrodynamics [49]; this
leads us to hypothesize that the different locations of stability
for ± 1

2 defects reflect differences in anisotropic hydrodynamic
wall interactions of the defect species. In particular, − 1

2 defects
are stable in orientations for which their active flow pushes
them toward the wall, while + 1

2 defects are unstable in such
orientations. In support of this hypothesis, Figs. 5(c) and 5(d)
show the orientational distributions of ± 1

2 defects, measured
at their respective locations of maximal density. We see that
− 1

2 defects have a strong tendency to orient with one of their
“points” facing inward, normal to the wall. Near the wall, the
threefold symmetry of the flow is broken, leading to a net active
flow that drives the defect further into the wall. In contrast, + 1

2
defects tend to orient tangentially to the wall, such that their
active flow drives them to process around the container. In the
final section, we perform an axillary analysis to confirm the
stability of these orientations for both defects in the absence
of other forces.

This behavior persists regardless of topology. Figure 6
compares defect orientations at two annuli for the aster (+1)
boundary condition and once again finds a hydrodynamic
region (a) with peaks identical to Fig. 5. Only close to the wall
(b) are orientations perturbed by anchoring, Fig. 6. Additional
topologies are presented in Fig. 7.

C. Hydrodynamic stability of defects near walls

To assess the orientational hydrodynamic stability of ± 1
2

defects near a wall, we solve the Stoke’s equation [Eq. (7)], in
the presence of an imposed force distribution that represents
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an idealized defect. We perform the calculation separately for
the two defect charges; in each case the force is imposed
over a discrete region. We then find the net vorticity on the
defect resulting from the imposed force, ω̄ = ∫ r0

0 rωdr . This
approach only evaluates the orientational stability of a defect
with respect to hydrodynamic forces.

Details of the calculation are as follows. The Stokes equa-
tion is written as

∇2u − ∇P + �(r − r0)f0v±1/2(ψ) = 0, (7)

with the third term approximating a defect with regions of
uniform force density. For more details on the flow created by
single defects we refer the reader to Fig. 2 of Giomi et al. [49].
For a + 1

2 defect, the force is defined as a disk of radius r0

(black circle) (where � is the Heaviside step function) with a
force per unit area of uniform magnitude f0, in the direction
v+1/2(ψ) (where ψ is the polar angle defined in Fig. 8):

v+ 1
2

=
{− sin ψ

cos ψ

}
. (8)

Similarly, a − 1
2 defect is represented as a sum of three

discrete regions, each with an inward facing force oriented
120◦ with respect to its neighbors:

v− 1
2

=
3∑

i=1

�i(θ,ψ)

{
sin (ψ + δi)

− cos (ψ + δi)

}
, (9)

where the step functions define the three angular sectors
around the defect center �i(θ,ψ) = �[θ − ( π

6 + δi) − ψ] −
�[θ − ( 5π

6 + δi) − ψ], and the angle δi = (i − 1) 2π
3 defines

the angle shift between sectors.
Figure 8 shows an example of the flow and vorticity fields

(left column) created by each of the defects near a wall; the
right column plots the resulting net vorticity on the defect
region as a function of orientation angle ψ . Each defect has
multiple stationary orientations (corresponding to zero net

FIG. 7. Orientation distributions for + 1
2 (magenta) and − 1

2 (blue) defects in the turbulent regime (α = 12, R = 15) for three different
topological boundary conditions; from left to right: natural boundary condition n · ∇Q|∂� = 0 (no topological preference), saddle (−1), neutral
(0). Rows are different radial bins (see Fig. 6). In bin (i), defect orientations are dominated by hydrodynamic wall effects, and are therefore
similar for all anchoring conditions. In bin (ii), the importance of the anchoring condition near the wall is revealed by differences in orientation
distributions for different topological boundary conditions.
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FIG. 8. Left: Flow field and vorticity for +(−) 1
2 defects near

a wall at angle ψ . The area over which the force is imposed is
circumscribed by a black circle in each plot. Right: The total vorticity
integrated over the defect area as a function of orientation ψ , revealing
both fixed points (roots) and stability (slope). Filled (open) circles
denote stable (unstable) stationary defect orientations. The red circle
in each plot corresponds to the configuration in the left column.

vorticity), but only some of these configurations are stable.
For example, the + 1

2 defect can be oriented normal to the
wall directed inward ψ = 0◦ or facing away ψ = 180◦, but
since ∂ω̄

∂ψ
|ψ=0 > 0, perturbations will result in a rotation away

from ψ = 0. Since the stable orientation for + 1
2 defects faces

away from the boundary, they will tend to both reorient and
propel away from boundaries. In contrast, for − 1

2 defects
∂ω̄
∂ψ

|ψ=0, 2π/3, 4π/3 < 0, so vorticity will restore the defect to

orientations ψ = 0, 2π
3 , and 4π

3 . Unlike the stable configuration

of + 1
2 , in these configurations, the flow continues to drive the

defect into the wall.
The consequences of hydrodynamic wall interactions with

different anchoring conditions are shown in Figs. 5 and 6;
an exhaustive accounting of the behavior of all topologies
explored is given in Fig. 7. In all cases, the annular region
closest to the wall is dominated by FLDG. Throughout the rest
of the domain, hydrodynamics dominate and system behaviors
are topology independent.

IV. CONCLUSION

In a confined passive liquid crystal, the director field is
globally determined by the topology imposed by chemistry
and geometry of the boundary. Our results show that in an
active liquid crystal, defect hydrodynamics relegate any net
topological charge required by the container’s geometry and
boundary conditions to a small layer along the boundary; this
creates a topologically neutral, bulklike interior. The overall
spatiotemporal dynamics are therefore insensitive to boundary
conditions on the director field. Remarkably, this insensitivity
persists even under sufficiently high confinement to establish
the minimal motile configuration, the circulating state, whose
flow consists of the coarsest possible vortex geometry. In all
topologies that we explored, the active flows created by the two
corotating + 1

2 defects dominate the flow. While the inability
of anchoring to affect system behaviors suggests that passive
liquid crystal control strategies cannot be directly applied
to active systems, the persistence of the circulating state in
different container topologies (including those without explicit
topological constraints [12,18]) suggests robustness that could
be leveraged to design microfluidic systems containing active
nematics.
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